

IGETECMA s.a.s.

Istituto Sperimentale di Geotecnica e Tecnologia dei Materiali Concessone Ministeriale D.M. 54143 del 7/11/05

Rapporto di Prova n°105/11/S

SETTORE:

Geofisica - Multichannel Acquisition of Surface Waves

COMMITTENTE:

<u>D.L.</u>:

Geol. R. Caverni

CANTIERE:

Via Fratelli Rosselli, San Casciano (FI)

RIFERIMENTO:

R.P.E. n°130/11

Indice:

1 Scopo del lavoro

2 MASW (Multichannel Analysis of Surface Waves)

2.1 Principi teorici

2.2 Acquisizione ed elaborazione

3 Presentazione dei dati

4 Normativa sismica e calcolo del Vs30

5 Risultati dell'elaborazione

6 ,Caratteristiche della strumentazione

Il Direttore del Laboratorio

frances Pl

Ing. F. Politi

Il Tecnico

Geol. L. Gambassi

blesset Janlan.

1 Scopo del lavoro

Per conto del e con la D.L. del Geol. R. Caverni, è stata eseguita una indagine *Multichannel Acquisition of Surface Waves* (MASW) finalizzata al calcolo del parametro Vs30, in Via Fratelli Rosselli a San Casciano (FI). L'ubicazione è stata decisa in accordo con la D.L.

2 MASW (Multichannel Analysis of surface waves)

2.1 Principi teorici

La tecnica MASW si basa sulla registrazione e lo studio della curva di dispersione delle onde superficiali, il cui contributo predominante è caratterizzato dalle onde di Rayleigh che sono onde di superficie che si producono per riflessione di onde S (di taglio) alla superficie. Se il mezzo è omogeneo hanno velocità di fase pari al 92% di quella delle onde S che le hanno generate, altrimenti sono dispersive. I punti investiti da un'onda di Rayleigh si muovono descrivendo ellissi in modo retrogrado rispetto al moto dell'onda. L'ampiezza delle ellissi diminuisce con la distanza dalla superficie ovvero con la profondità.

Partendo dall'assunzione di una variazione della velocità delle onde sismiche con la profondità (terreno stratificato orizzontalmente) il terreno, agendo da filtro, separa le varie componenti dell'onda di volume caratterizzate ciascuna da diversa velocità di propagazione (velocità di fase) e da diversa lunghezza d'onda. Tale comportamento delle onde si chiama dispersione e proprio sull'analisi della curva di dispersione delle onde di Rayleigh si basa la tecnica MASW per ottenere il profilo di velocità delle onde di taglio (Vs) con la profondità. Grazie a queste proprietà, una metodologia che utilizza le onde superficiali può fornire informazioni sulle variazioni delle proprietà elastiche dei materiali prossimi alla superficie al variare della profondità. La velocità delle onde S (Vs) è il fattore dominante che governa le caratteristiche della dispersione delle onde superficiali. Nella tecnica d'indagine MASW la profondità di investigazione è, in linea teorica, correlata alla lunghezza del profilo e inversamente correlata alla frequenza propria dei sensori usati, mentre la risoluzione verticale è direttamente correlata al numero di sensori utilizzati per registrare il campo d'onda sismiço. Il limite principale del metodo è l'assunzione che siano minime le variazioni orizzontali dei parametri geofisici al di sotto dei sensori. Il maggior pregio è nella possibilità di ottenere buoni dati anche in condizioni in cui risulta difficile l'acquisizione diretta delle onde di taglio'.

3 Presentazione dei dati

Nella presente relazione vengono forniti i seguenti elaborati:

- ubicazione delle indagini
- profilo medio di velocità delle onde di taglio (Vs) con la profondità
- profilo di velocità delle onde di taglio (Vs) con la profondità per ciascuna registrazione eseguita
- registrazioni di campagna
- curve di dispersione F-k per ciascuna registrazione eseguita

4 Normativa sismica e calcolo del parametro V_s30

L'Ordinanza P.C.M. $n^{\circ}3274/03$ istituisce diverse categorie di profilo stratigrafico del suolo di fondazione ai fini della definizione dell'azione sismica di progetto. Tali categorie vengono definite in base al calcolo del parametro $V_{s}30$ che è dato da:

$$V_s 30 = 30 / \Sigma_{i=1,N}(h_i/V_i)$$

dove h_i e V_i indicano lo spessore (in metri) e la velocità delle onde di taglio SH (in m/sec.) dello strato i-esimo, per un totale di N strati presenti nei 30 m superiori.

Categorie di Suolo di Fondazione	V _s 30 m/s	N _{spt} - C _u
A Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di Vs30 superiori a 800m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m.	V _s 30 > 800	
Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fine molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs30 compresi tra 360 m/sec e 800 m/sec (ovvero Nspt30> 50 nei terreni a grana grossa e cu > 250 kPa nei terreni a grana fine)	360< V _s 30 <800	N _{spt} > 50 C _u > 250 kPa
C Depositi di terreni a grana grossa mediamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs30 compresi tra 180 m/sec e 360 m/sec (ovvero 15 < Nspt < 50 nei terreni a grana grossa e 70 <cu <250="" a="" fina)<="" grana="" kpa="" nei="" td="" terreni=""><td>180< V₃30 <360</td><td>15 < N_{spt} < 50 70 < C_u < 250 kPa</td></cu>	180< V₃30 <360	15 < N _{spt} < 50 70 < C _u < 250 kPa
D Depositi di terreni a grana grossa scarsamente addensati o a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs30 inferiori a 180 m/sec (ovvero Nspt < 15 nei terreni a grana grossa e cu < 70 kPa nei terreni a grana fina)	V _s 30 < 180	N _{spt} <15 C _u <70 kPa

E Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento con Vs>800 m/sec.	V _s 30 < 360	
S1 Depositi costituiti da Vs30 inferiori a 100m/s (ovvero 10 <cu<20 3="" 8="" a="" almeno="" altamente="" argille="" bassa="" che="" consistenza,="" di="" fine="" grana="" includono="" kpa),="" m="" o="" oppure="" organiche<="" strato="" td="" terreni="" torba="" uno=""><td>V_s30 < 100</td><td>10 < C₀< 20 kP,a</td></cu<20>	V _s 30 < 100	10 < C₀< 20 kP,a
S2 Depositi di terreni suscettibili a liquefazione, di argille sensitive, o qualsiasi altra categoria di terreno non classificabile nei tipi precedenti.		

Tabella II - Categorie di suolo di fondazione

5 Risultati dell'elaborazione

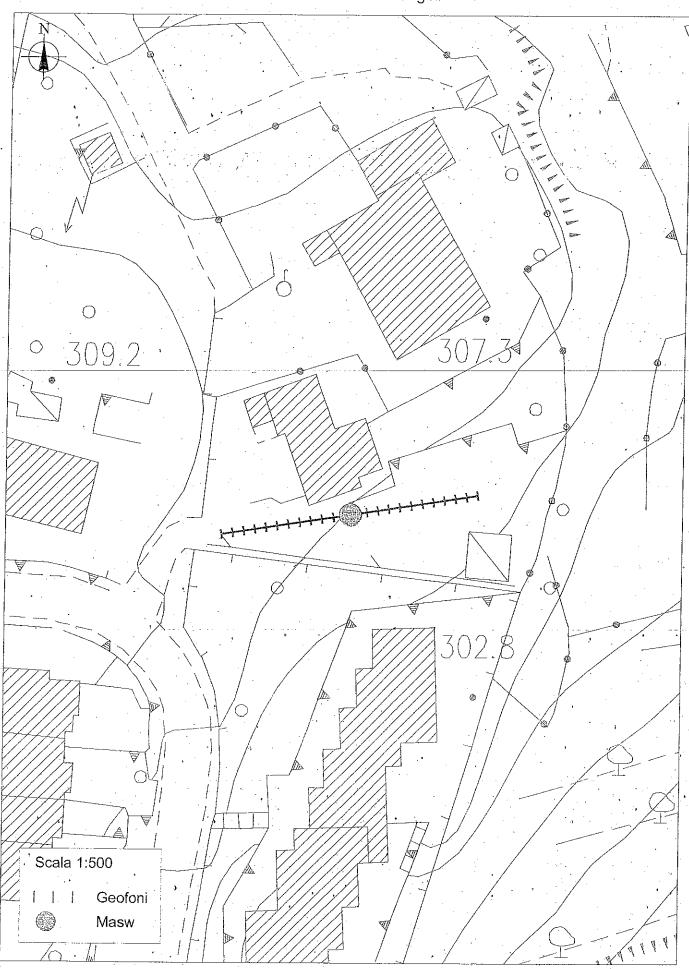
Nel caso presente la tecnica MASW è stata scelta per l'impossibilità di effettuare buone registrazioni dirette delle onde di taglio a causa di forti rumori legati all'attività antropica in prossimità della zona in esame.

Le curve di dispersione ricavate dalle registrazioni sono state elaborate separatamente e i profili verticali di velocità delle onde di taglio derivanti sono stati mediati fra loro per ottenere la curva che descrive l'andamento della Velocità delle onde S con la profondità: questo procedimento è stato effettuato per minimizzare gli errori dovuti a possibili variazioni laterali lungo il profilo.

Il valore di Vs30 calcolato nella presente indagine è <u>403 m/s</u>: per le litologie, gli spessori ed i contrasti di velocità presenti, il sito rientra nella <u>Categoria B</u> dei suoli di fondazione.

6 Caratteristiche della strumentazione

Il sistema di acquisizione usato nella presente campagna d'indagini è composto da un sistema modulare della Geometrics così configurato:


Sismografo GEODE 48 canali (2 moduli a 24 canali) con Controller Stratavisor NZC:

- risoluzione segnale A/D 24 bit;
- escursione dinamica 144 dB, 110 dB istantanea a 2 ms;
- passo di campionamento da 0.02 a 16 ms indipendente dal tempo d'acquisizione;
- fino a 64.000 campioni per traccia;
- distorsione 0:0005% a 2ms, 1.75 208 Hz;
- amplificazione del segnale da 0 a 36 dB;
- filtri anti-aliasing analogici a 90 dB della frequenza di Nyquist;
- filtri digitali in acquisizione di low-cut, high-cut e notch con pendenza di 24-48 dB/oct;

Rapporto di prova n°105/11/S

- precisione trigger in sommatoria 1/32 del passo di campionamento;
- pre-trigger fino a 4096 campioni, delay sino a 1.000 ms;
- salvataggio dati in formato SEG-2 su hard-disk incorporato;
- 24 geofoni verticali con frequenza propria di 4.5 Hz;
- sistema di starter (trigger) mediante accelerometro;
- energizzazione mediante mazza da 5 Kg, minibang calibro 8, grave da 30/60 kg.

Ubicazione delle indagini

Rapporto di prova n°105/11/S.